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Abstract: Biomass burning for home energy use contributes to negative health outcomes and
environmental degradation. As part of the REACCTING study (Research on Emissions, Air quality,
Climate, and Cooking Technologies in Northern Ghana), personal exposure to carbon monoxide (CO)
was measured to gauge the effects of introducing two different cookstove types over four intervention
groups. A novel Bluetooth Low-Energy (BLE) Beacon system was deployed on a subset of those CO
measurement periods to estimate participants’ distances to their most-used cooking areas during the
sampling periods. In addition to presenting methods and validation for the BLE Beacon system, here
we present pollution exposure assessment modeling results using two different approaches, in which
time-activity (proximity) data is used to: (1) better understand exposure and behaviors within and
away from homes; and (2) predict personal exposure via microenvironment air quality measurements.
Model fits were improved in both cases, demonstrating the benefits of the proximity measurements.
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1. Introduction

Air pollution from solid fuels for cooking and heating is responsible for an estimated 2.6 million
premature deaths globally [1]. Although the main drivers for personal exposure are generally
well understood on a global scale, it can be challenging to determine the impacts and relative
importance of pollution sources on personal exposure at the local scale. Understanding where,
when, and to what extent individuals are exposed to pollution requires technology that is still in
development. Cost-effective, temporally-resolved measurements of personal exposure and related
parameters (like location and activity) offer valuable information on sources of exposure. Surveys,
which are commonly used to assess some of these factors, are prone to bias. In the household
energy field, researchers are often interested in measuring how a change in technology (e.g., a cleaner
stove) affects personal exposure to air pollution and associated health outcomes [2–4]. This task
is complicated by the fact that individuals are exposed to a vast array of pollutants from a range
of sources, many of which are beyond the control of the study. The degree to which this affects a
particular study depends on the study design (e.g., randomized vs observational) and the particular
context (e.g., the contribution of stove-related sources to personal exposure). Even in “gold-standard”
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randomized designs, the presence of other exposure sources can contribute to measurement error in
the key outcome of interest (exposures related to the intervention), leading to imprecise estimates and
difficulty interpreting results. For example, if a randomized cookstove intervention study finds that an
intervention failed to reduce personal exposures, this may be because a) stove-related exposures did
not decrease, perhaps because the stove did not reduce emissions and/or because of low usage, or b)
stove-related exposures declined, but their contribution to overall exposures was too small to detect
an effect. These two scenarios have different policy implications and cannot be disentangled without
additional data sources.

Source apportionment has been used previously to provide estimates of pollution source
contributions to personal exposure. In the household energy realm, Piedrahita and colleagues found
decreased exposure to elemental carbon particulate levels among two cookstove intervention groups
in Ghana but were surprised when stove usage monitoring and in-field emission testing suggested
that changes in behavior and/or other sources beyond the stoves might explain these differences [5–7].
In China, Huang et al. performed source apportionment of PM2.5 exposure samples from women
cooking with biomass fuels and concluded that not only were a variety of sources identified but there
were no relationships between questionnaire-based measurements and source contributions, pointing to
the complex spatial, temporal and behavioral patterns that are not captured by these questionnaires [8].
Source apportionment of PM samples, however, has various drawbacks, including the necessity of
time-integrated samples (often 24 h or more), challenging and costly sampling and analysis methods,
uncertainty, and variability in the chemical profile of relevant pollution sources, making it difficult
to pinpoint the importance of sources to exposures. Advances in location-specific, time-integrated
filter sampling show promise assigning exposure to pre-determined spatial microenvironments yet fall
short of attributing exposure to specific sources [9].

New tools leverage mobile and wireless technology to enable proximity-detection systems,
which offer opportunities to improve measurement of air pollution- human health linkages through
time-exposure-apportionment. Here, we describe the development of a low-cost method to provide
greater confidence in attributing exposure differences to an intervention as well as more fine-grained
insights into sources, behaviors and exposures. Based on Bluetooth Low Energy (BLE) Beacon
technology, we developed this proximity sensing system using commercially available BLE Beacons to
estimate the user’s distance to the cooking area (time-activity data) and therein attribute exposure
to a source and improve personal-to-cooking area pollution modeling. Since the development and
implementation of our system, additional validation work has been conducted using principles of the
system in Guatemala [10] with expressed interest in modeling exposure using an array of low-cost
sensors [11].

We developed this method within the context of REACCTING (Research on Emissions, Air
quality, Climate, and Cooking Technologies in Northern Ghana), a 200-home randomized cookstove
intervention study in the Kassena-Nankana (KN) districts of Northern Ghana (November 2013–February
2016). Participants were randomized into four different intervention arms of 50 households each: one
group received two locally made rocket stoves (Gyapa), one received two Philips HD4012 LS stoves,
one received one Gyapa stove and one Philips stove, and the fourth was a control group, in which
households continued use of traditional 3-stone fires (TSFs) and charcoal stoves (these households were
given their choice of stoves after the study). Prior publications from the REACCTING project have
reported on the study protocol and provided details about the study region and population [12,13],
stove usage, PM2.5 concentrations for personal, cooking area microenvironment (predominately
outdoors), and regional measurements [6,7,14] as well as cookstove emissions and efficiency [5] and
urban and rural differences in exposure and stove use [15].

In this paper, we present modeling results for carbon monoxide (CO) exposure as a function of
time-activity category using covariates including BLE Beacon proximity data and the intervention
groups. The data used are from a subset of all the CO exposure data collected during the study,
and are from deployments where the CO data were collected in tandem with the BLE Beacon system.
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We also present modeling results relating personal and cooking area microenvironment CO using
time-activity data from the BLE Beacon system. The data used in this model were a further subset
of the measurements used in the intervention exp model, that also included microenvironment CO
measurements. Lastly, BLE Beacon system performance validation results are presented.

Proximity Monitoring Background

A Bluetooth Low Energy (BLE) Beacon proximity monitoring system fills a gap in the exposure
assessment toolbox. This system, at a high level, is comprised of BLE signal-emitting devices and
receiver hubs (e.g., mobile phone) that register and record the received signal strengths, which vary
based on distance between the two. This system serves two purposes in this work. First, it provides
time-activity information that is used to analyze personal exposure from sources at home vs. sources
away from home. Second, by having a prediction of distance from stoves co-located with pollution
monitors, it enables estimation of personal exposure from microenvironment (within residential cooking
area) measurements. Personal exposure to air pollution has traditionally been difficult to measure
due to high costs and power consumption, and participant burden due to factors like instrument size
and operating noise [11]. Such issues can lead to non-compliance of protocols by users. Modeling
personal exposure from microenvironment measurements is thus an attractive proposition, and past
cookstove studies have done this in different ways using time-activity budgets from surveying [16–22].
Baumgartner et al. [22] found a correlation coefficient of 0.58 (95% CI: 0.34, 0.75) between in-home
and personal PM2.5 concentrations for adult women over 24-hr measurements in rural China, whereas
measurements for children were poorly correlated with a correlation coefficient of 0.08 (95% CI: −0.46,
0.59). Cynthia et al. [20] assessed the quality of this relationship for PM2.5 in Michoacán, Mexico and
found a weak relationship. They noted that exposures from short duration visits in rooms can be
important for exposure (like walking into a smoky kitchen for a moment) but can be difficult to record
using traditional methods. Patel et al., illustrated variation of PM2.5 concentrations on the scale of
meters within small residential indoor environments by installing a high density of instruments in test
homes burning biomass [23].

Measuring participant time-activity is challenging and current approaches have major drawbacks.
Self-reported time-activity measurement approaches [24] are resource intensive and can result in
misclassifications [25]. New developments in wireless technologies such as Wi-Fi allow precise indoor
location estimates, but resources are required to train the identification system and a high density of
Wi-Fi access points is necessary incurring higher costs. Global Positioning System (GPS) devices can be
used to assess location [26,27]; however, these tools tend to have a relatively high power consumption
and accuracy may suffer in regions with certain geographic characteristics (e.g., mountains, canyons,
and dense foliage) and, perhaps more crucially, in indoor environments. Radio Frequency Identification
(RFID) tags can be used as binary room-location indicators, but users must place their small ‘passive’
type badges close to the RFID receiver, making compliance a concern. Larger ‘active’ RFID badges
that use a battery to increase transmission power have been shown to perform well in indoor location
testing [28], and would be a viable technology if the additional logging capabilities conferred by the
phones were not needed. Cheng and colleagues piloted an ultrasound localization system (Marvelmind
Indoor Navigation System) towards mapping indoor PM2.5 concentration distributions at very high
spatiotemporal resolution (1 s, 1 cm) [29]. Costs are generally higher for both RFID and ultrasonic
systems relative to BLE systems.

BLE technology is well suited for indoor localization (i.e., tracking participant movement and
proximity to sources) as it offers a simple measurement principle, system flexibility, and commodity
pricing for the hardware. Additionally, there is a benefit to the use of a phone as it can be used for
additional monitoring tasks, such as acceleration (compliance monitoring, and acceleration-based
activity classification [30], real-time data sharing, and GPS which can help identify important non-home
pollution source locations. Bluetooth has been studied extensively for indoor localization in marketing
applications (e.g., for automated and targeted advertising) but with substantially different goals of high
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accuracy and precision using a large number of Bluetooth transmitters in well-characterized spaces.
In this work, we show that such a system contributes substantially to personal exposure monitoring
with only zonal time-activity information, which is simpler to obtain. We begin by presenting Beacon
system performance validation results along with relevant metrics. We then show that distance
categorization improves exposure model performance and adds valuable insights about the origins of
CO in the context of the REACCTING study.

2. Methods

2.1. Sampling System Overview

As part of the REACCTING study, a total of 71 48-h personal CO exposure samples were collected,
along with BLE Beacon measurements between July 2014 and November 2015. Primary cook females
were targeted for participation in the BLE Beacon measurements to better understand the exposures
and activity patterns of those spending the most time in cooking areas (Table 1). For 38 of those samples,
we also measured cooking area microenvironment CO concentrations (see configurations as shown in
Figure 1). In this work, we present results for a subset of personal exposure CO measurements that
have corresponding BLE Beacon measurements. Table 1 presents overall sample statistics, and by
activity periods, which are defined based on those BLE Beacon measurements. Analysis of the complete
personal CO exposure measurement dataset is reported elsewhere [31].
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Figure 1.  Example deployment diagram. Beacons were mounted on the cases of the orange G-Pod 
pollution monitors. Logging Android phones were worn by participants along with personal air 
quality monitors. 

Microenvironment air quality monitors (G-Pods, Boulder CO, mobilesensingtechnology.com) 
were placed in the two most-used cooking areas in each home, and were equipped to measure CO 
and CO2 at sub-minute intervals and averaged to one-minute, and in some cases, integrated PM2.5, 
and total VOCs [7,31]; Supplementary Materials Sections 1 and 2). Many households in this region 
reported having one or two cooking areas. To capture the most cooking activity, the two most-used 
cooking areas were monitored. Study participants carried personal CO monitors along with 
Bluetooth-logging Android phones. CO calibrations were performed at the University of Colorado-
Boulder, as well as in the field, with calibration details presented previously [31]. BLE Beacons were 
adhered to the G-Pods to provide distance estimates between participants and the two primary 
cooking areas. 

Any personal location tracking device introduces ethical questions, as the potential for misuse 
and exploitation exists [32]. Therefore, verbal consent was obtained from study participants, after 
explaining the operation of each instrument they carried. Participants were also given the option to 
have their data deleted at the end of the sampling period if they so desired. 

2.2. BLE Proximity Sensing System 

2.2.1. BLE Beacons 

Figure 1. Example deployment diagram. Beacons were mounted on the cases of the orange G-Pod
pollution monitors. Logging Android phones were worn by participants along with personal air
quality monitors.

Microenvironment air quality monitors (G-Pods, Boulder CO, mobilesensingtechnology.com)
were placed in the two most-used cooking areas in each home, and were equipped to measure CO and
CO2 at sub-minute intervals and averaged to one-minute, and in some cases, integrated PM2.5, and total
VOCs [7,31]; Supplementary Materials Sections 1 and 2). Many households in this region reported
having one or two cooking areas. To capture the most cooking activity, the two most-used cooking
areas were monitored. Study participants carried personal CO monitors along with Bluetooth-logging
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Android phones. CO calibrations were performed at the University of Colorado-Boulder, as well as in
the field, with calibration details presented previously [31]. BLE Beacons were adhered to the G-Pods
to provide distance estimates between participants and the two primary cooking areas.

Any personal location tracking device introduces ethical questions, as the potential for misuse
and exploitation exists [32]. Therefore, verbal consent was obtained from study participants, after
explaining the operation of each instrument they carried. Participants were also given the option to
have their data deleted at the end of the sampling period if they so desired.

Table 1. Sample statistics for the home monitoring deployments that included BLE Beacons. These
include number of deployments, average sampling duration of 48 and 24 h, number of samples removed
due to faulty Lascars CO monitors.

All Available
Days with

Personal CO and
Beacon Data

‘Home Cooking by
Stove Group’ vs.

‘Home Not Cooking’
vs. ‘Away’ Data Set

(Equation (1))

Personal vs.
Cooking Area
CO by Zones
(Equation (2))

Daily Average
Personal vs.

Cooking Area CO
(Equation (3))

Duration

Compliant and
non-flagged periods

deployed

279 (time-activity
periods)

107 (time-activity
periods) 123 (zone-days) 38 (days)

Daily compliant
duration in hours

(mean (SD))
19.9 (3.25) 20.28 (3.6) 20.94 (3.48) 20.22 (3.81)

Unique participants 31 22 21 22

Gender
covariates
(activity
periods)

Primary cook Females 228 101 115 36

Non-primary cook
females 51 6 8 2

Males 0 0 0 0

Age of females over 5y
(med, SD, max, min) 38.4, 12.9, 12.3, 73.4 39.4, 14.2, 73.4, 12.3 39.4, 14.2, 73.4,

12.3 39.4, 14.8, 73.4, 12.3

Age of females under 5y
(med, SD, max, min) 2.1, 0.9, 1.9, 4.2 3.3, 0.5, 3.8, 2.9 3.3, 0.5, 3.8, 2.9 3.3, 0.6, 3.8, 2.9

SES
(activity
periods)

Poorest 48 24 30 30

Poorer 72 24 26 26

Poor 69 12 15 15

Less poor 27 20 23 23

Least poor 63 27 29 29

Seasons
(activity
periods)

Harmattan 150 37 47 13

Hot dry 23 11 15 4

Light Rainy 31 20 25 4

Heavy Rainy 75 39 36 14

Transition 0 0 0 0

Stove
Group

(activity
periods)

Control 31 14 15 6

Gyapa/Philips 48 27 28 9

Philips/Philips 110 29 31 10

Gyapa/Gyapa 90 37 49 13

2.2. BLE Proximity Sensing System

2.2.1. BLE Beacons

BLE Beacons are small battery powered devices that periodically broadcast their media access
control (MAC) addresses and other unique identifying information. They have found use in a variety of
commercial applications requiring location-based services, such as advertising, where a phone would
perform a task upon receipt of a BLE Beacon signal, like offering an in-store coupon. Roximity Model X
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Beacons (Roximity, Denver, CO, USA) were used in our study due to their small size (6.4 × 6.4 × 2.5 cm),
long battery life of 5 years, and low cost of $12 (USD) per Beacon. They employ the Apple iBeacon
protocol to transmit data. However, only the Beacon MAC addresses and received signal strength
indicator (RSSI) are recorded in our application. These signals can be logged with most Bluetooth LE
capable systems, including many iOS and Android devices, and a purpose-built Raspberry Pi-based
Beacon Logger from Berkeley Air Monitoring Group (Berkeleyair.com, Berkeley, CA, USA). The phones
record the identifying information and RSSI from any Beacon within range (generally less than 100 m
in open space). RSSI is then converted to a distance measure, providing an open-field distance estimate
between phone and Beacon.

2.2.2. BLE Beacon Receivers

Phicomm C230w Android phones served as Bluetooth receivers and data loggers (56 USD per
unit). A custom Android application was written and installed on each phone to log the Beacon
address data, Beacon RSSI, as well as acceleration, GPS, and GPS accuracy (GPS could be manually
disabled). Data were logged every six seconds to the phone’s micro secure digital (SD) card in the
JavaScript Object Notation (JSON) format. The app can be configured to upload data to a remote server,
but data were downloaded manually in our study. The phone battery was swapped for an external 6.6
Ah li-ion battery pack, yielding 50–60 h of continuous use. Phones with battery packs weighed 280 g
and were consistently placed in the outer pockets of the personal sampling pack.

2.2.3. BLE Beacon Data Processing

RSSI is sensitive to path effects like room geometry and obstructions in the measurement area,
including people, since water is a strong signal attenuator for Bluetooth that transmits on the 2.4 GHz
band. Considering such limitations, many applications use distance categories rather than explicit
distance. Here, we used zones defined as ‘near’ (<15 m), ‘medium-near’ (15–30 m), ‘medium-far’
(30–50 m), ‘far’ (50–90 m), and ‘within signal range’ (>90 m).

There are two primary modes of localization uncertainty and miscategorization: (1) high frequency
attenuation, or a ‘teleportation’ effect, where phones appear to jump between distances faster than
physically probable, and (2) sustained attenuation that consistently places the user farther from
the Beacon than they actually are. The first issue can be mitigated with algorithms applied to the
data [33,34]. The second issue was not addressed in this work, which may have resulted in bias towards
more time spent further from the Beacon, but this effect can be mitigated with more BLE emitters or
receivers throughout the study area, or if other types of sensors are also used.

We developed a filtering algorithm to reduce the high-frequency attenuation effects, as previous
works have mainly focused on precise within-room location or room categorization [35,36] rather
than distance time series categorization. Our approach, the ‘maximum velocity’ (MV) filter, assigns
greater weight to higher signal strength data by defining a maximum change in distance over time
(an ‘expected walking velocity’), and recursively adjusts the signal strength values i according to the
previous value i-1. The expected velocity here was set to ß = 1 m/s, and with ∆t the time between
samples, the predefined maximum distance is then dmax = ß∆t, giving di = di-1 + ß∆t. For example,
as we collected six-second data, if consecutive distance readings are 5m and 25m, the second data
point would be modified to d2 = 5 m + 1 m/s × 6 s = 11 m. Median values from each minute are then
extracted from this data to further reduce noise and align with other minute-data.

2.3. Proximity Calibration and Validation

In July 2016, the Beacon RSSI values were calibrated and validated. We first performed testing
in an open field as a base case to assess distance calibration reliability and the effectiveness of our
classification scheme. Two phones were placed in the center of a set of concentric circles at radii of
2 m, 5 m, 10 m, 20 m, and 40 m, and a person wearing two Beacons on either hip walked slowly
and randomly throughout each zone for 20 min. These zone categories were different (smaller) than
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those used in the models for the field data because we found that in the field, sustained attenuation
interference effects observed in typical homes resulted in unbalanced distributions over the distance
categories, and we wished to balance them. A second validation test was later performed in a location
with additional obstructions to mimic characteristics of study households (Supplementary Materials
Section 5). In-field calibrations of Beacon RSSI would be beneficial in future work.

Before the start of each 20-min testing period, there were periods when the tester stood still at the
intersections of the areas, in order to generate known calibration data. The data from both Beacons
and both phones were aggregated to generate a single calibration function for all data collected during
validation testing as well as throughout the study deployments in Ghana. Details on BLE Beacon
distance calibrations are presented in Supplementary Materials Section 3, Figures 1 and 2.
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Figure 2. Time series showing personal and cooking area CO concentration with Beacon proximity
data to each cooking area. The cooking area monitor, and their respective Beacons were named G8 and
G9. Lower plots show proximity to the given cooking areas, and the number of samples observed in
each zone, or in the case of >zone 4, when signal is weak or lost. Zone thresholds were defined as 15 m,
30 m, 50 m, and 90 m.

As part of the validation we tested the performance of a merged signal that combined the two
Beacons worn on the hips, by selecting the stronger signal at each time point, then applying the
MV filter. This approach could be used to reduce the multi-path and attenuation effects in future
deployments, though if participants carry the Beacons rather than the phone, they would miss out on
benefits of carrying the phone, such as GPS and acceleration logging. Classification performance was
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assessed using the matching success rate and the rate at which the predicted classification was within
one zone of the correct zone, for all available combinations of phones and Beacons.

Validation testing for the ‘open field’ deployment and all combinations of phones and Beacons,
when using the MV filter and data from a single Beacon, showed correct classification of zones on
34.7% of observations, and 65.3% of observations were within one zone of the correct zone. In the
later validation test with additional obstructions, those classification rates were 28.2% and 68.6%,
respectively. The classification rates when using merged data from both Beacons on the hips were
53.2% and 89.5% for correctly classified and within-one classification respectively for the ‘open field’
test, and a similar 46.0% and 91.3% for the validation set with obstructions (Supplementary Materials,
Figures 3 and 4). Participant compliance, meaning the daytime hours when participants were predicted
to be wearing the phone and air sampling equipment, was estimated at 81.9% using the variability in
the Bluetooth signals over time ([37], Supplementary Materials Section 5.
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Figure 3. Time spent in each zone as a percentage of the day. Marker colors indicate the day’s mean
exposure to CO. Some participants spent nearly the entire day within zone 1, leading to questions about
compliance. Additional sensor streams could improve our measurement of compliance in future work.
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2.4. Attributing CO Exposure as a Function of Time-Activity Category

The inclusion of time-activity data allows us to gain additional information about how different
cookstoves and cooking behaviors impact CO exposure. To help illustrate this, a time series of Beacon
proximity data along with personal and cooking area CO concentration is presented in Figure 2. The
data show a clear relationship between personal CO exposure and cooking area CO when the user
is at home, and sharp reduction of personal CO when the user leaves home at 13:00, as the home
CO level remains elevated. This household also appears to use the Philips stove more than the three
stone fires (TSFs) throughout the day. This user is unique in that they do not spend the night within
range of the cooking area, either spending it in another home, or obstructed enough to be out of range.
It can also be seen that periods spent near the stove, as defined by the nearest proximity values, have
high variability. It is difficult to discern whether this is due to real movement or teleportation effects.
Additional Beacons could reduce this uncertainty in future studies.

Log(Mean personal COijk) = ß0 + ß1(Time-Activityijk) + αj + eijk (1)

A mixed effects regression model was used to determine the effect of the intervention on CO
exposure for various time-activity categories. Specifically, in Equation (1), log(Mean personal COijk)
represents the log-transformed average CO concentration on day i for individual j, in time-activity
category k. The ‘time-activity’ categorical variable is defined using the Beacon proximity data in
conjunction with available microenvironment CO data, and has six possible states: State 1 (“Away From
Home”): participant is considered ‘away from home’ if more than 90 m away from both cooking areas;
State 2 (“Home Not Cooking”): participant is within 90 m of any cooking area but no cooking appears
to be in progress; and States 3–6 (“Home Cooking”): for each of the four stove groups, participant is
within 90 m of any cooking area in the home, and any cooking area CO measurement in the home is
above 10 ppm (Supplementary Materials, Table 1). In other words, the ‘home cooking’ category is
interacted with stove group giving categories of ‘control group home cooking’ (State 3), ‘Gyapa/Gyapa
group home cooking’ (State 4), ‘Philips/Philips group home cooking’ (State 5), and ‘Gyapa/Philips
group home cooking’ (State 6). The 10ppm concentration threshold was chosen as it is substantially
higher than observed background concentrations in the region, and because temperature-based stove
usage data was not available for all households.

Covariates such as socioeconomic status and season were too sparse in some categories to include.
The individual random intercept αj accounts for the correlation within subjects due to repeated
measures, and eijk represents the random variation from subject to subject. More than 12 h of data
were required of the daily data (50% data completion) for inclusion in the model, as the primary goal
of these models was to assess the system rather than assess exposure over the entire intervention.

This model is useful for identifying time-activity categories with high average exposures. However,
it is also beneficial to consider elapsed time spent in each time-activity category to identify where
the most exposure comes from each day. Equation (1) was thus modified by changing the dependent
variable to total exposure by daily time-activity (ppm-hr) (Equation (2)). This approach highlights
nuances in different cooking behaviors. For example, if one stove group has very high average
exposures near the stove but does not spend as much time near that stove, total exposure levels may
be different than stoves that have the opposite effect.

Log(Total personal COijk) = ß0 + ß1(Time-Activityk) + αj + eijk (2)

Modeling CO Exposure Using Proximity and Microenvironment Monitoring

In addition to the exposure assessment models described in Equations (1) and (2), we also
investigated average personal CO exposure as a function of the user’s distance away from each cooking
area and the cooking area CO measurements (Equation (3)). This approach reflects previous efforts to
estimate personal exposures by assigning mean area concentrations from different areas in a home,
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using time-location budgets [20,21,37,38]. Such an approach is expected to perform better with precise
time-location budgets from a BLE Beacon system. Here, we test whether this is the case when looking at
the cooking area microenvironment by isolating exposures when the users are at home. The dependent
variable was the log transformed average personal CO exposure for each user deployment i, at each
distance zone j from a cooking area, using only observations when the participant was within zone 4
(based on the BLE Beacon distance data). The independent variable was cooking area CO, linearly
scaled by distance zone so as to account for dispersion (e.g., 100% of the cooking area CO was applied
if the user was in the nearest zone to the cooking area, and 80% if in the second nearest), and then log
transformed. An exponential weighting scheme was also tested to reflect the Gaussian dispersion of CO
through the cooking environment, but resulted in no significant difference in performance, likely due
to the naturally high variability in the environment. If multiple cooking areas were monitored, we used
a weighted average of the cooking areas based on the participant’s proximity to each. It is implicitly
assumed that concentrations within each zone are uniformly distributed, and average exposures within
each zone are independent of one another.

Log(Personal COijk) = ß0 + ß1(weighted cooking area COijk) + αj + eijk (3)

To understand the impact of the proximity measurements on this modeling approach, we also
estimated this model excluding the Beacon proximity data (Equation (4)), and compared model fit
between Equations (3) and (4).

Log(Personal COij) = ß0 + ß1(Daily average cooking area COij) + αj + eij (4)

3. Results

3.1. Time-Activity Results

For the 38 samples with personal CO, cooking area CO, and proximity data, we find that on
average, participants spent 8.5% (±7.9% SD) of their sampling days cooking at home, 51.4% (±30.5%)
of their time at home and not cooking, and 40.1% (±32.1%) of their time away (recall that ‘away’ is
defined as beyond zone 4 (90 m), and can still be within signal range). For the data set in which only
personal CO and proximity data was collected (33 additional days, presented as ‘all available data’ in
column 1 of Table 1), 24.9% of the day was spent within zone 1, 14.4% was spent in zone 2, 13.4% was
spent in zone 3, 14.8% was spent in zone 4, and 39.3% was spent beyond zone 4 (Figure 3). We observed
some participants with over 90% of their time spent in zone 1, which seems unreasonable, and could be
indicative of non-compliance (i.e., participants not wearing the sampling pack). Additional compliance
filtering steps may be appropriate in future work. Time-location variability among users was high,
changing with tasks and behaviors depending on household needs.

3.2. Exposure by Proximity

Figure 3 shows that 32.6% of total daily exposure (ppm-hr) was experienced within zone 1, 30.7%
was experienced in zones 2–4, and 36.7% was incurred beyond zone 4. In other words, roughly a third
of exposure was experienced in the immediate cooking area, while another third was experienced in
the home but outside of the cooking area, and the final third was experienced outside the home.

Directly analyzing average exposure by zone, the daily median and average exposures were
highest in the near-cookstove regions and decreased with increasing distance from the cooking areas,
although this decreasing trend was not statistically significant (Figure S5).

3.3. CO Personal Exposure Results Using Home vs. Away Categorization

Table 2 presents results estimated from the mixed effects regression model, Equation (1). The
reference category (control group at home and cooking) had expected exposure levels of 3.62 ppm (95%
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CI: 0.78, 16.75 ppm). During cooking periods at home, relative to the reference group, the Gyapa/Gyapa
group had 82.4% lower exposure (0.64 ppm, (0.10, 4.05), p = 0.07), the Philips/Philips group had
62.4% lower exposure (1.36 ppm, (0.20, 9.20), p = 0.31), and the Philips/Gyapa group had 81.1% lower
exposure (0.69 ppm, (0.10, 4.62), p = 0.23). While these differences are not statistically significant
at conventional levels, their large magnitudes are notable, and effects could be detected with more
precision with larger sample sizes. Exposures in the ‘home not cooking’ and ‘away’ categories were
95.0% (0.18 ppm (0.03, 0.94), p = 0.00) and 96.5% (0.13 ppm (0.02, 0.65), p = 0.00) lower than the reference
group, respectively.

Modeling integrated exposure by time-activity category (Equation (2)) yielded similar results,
indicating that the categories with the highest average exposures were also contributing to most of
the personal exposure (Table 2). The Gyapa/Gyapa, Philips/Philips, and Gyapa/Philips homes were
respectively responsible for 94.5% (p = 0.01), 71.8% (p = 0.30), and 92.7% (p = 0.01) lower integrated
exposures relative to the control group, who experienced 11.6 ppm-hr of integrated exposure (1.69,
79.1), while cooking at home. ‘Away’ and ‘home not cooking’ had integrated exposure contributions
that were 89.0% and 96.0% lower than the control group’s total daily cooking exposure.

3.4. Personal CO Exposure Modeling Using Cooking Microenvironment CO

The model from Equation (3) (Supplementary Materials, Table 2), fitting the log of average personal
CO exposure with the BLE Beacon proximity sensor zone-weighted cooking microenvironment CO
measurements accounted for 63% of within-subject variability. From Equation (3), for every unit
decrease of the log-transformed weighted cooking microenvironment CO (as the participant got closer
to the cooking area), there was a 173.5% (124.8%, 232.9%) increase in personal at-home expected CO.
The random intercept variance was 0.35, and intra-class correlation coefficient was 0.26 (Figure 4).

Model results using Equation (4), which was like Equation (3) but without the Beacon proximity
zone-weighted data, indicate that, on a daily average basis, the log of cooking area microenvironment
CO is a significant predictor of the log of personal CO exposure (p < 0.01), accounting for 28% of
within-subject variability (R2

adjusted = 0.28). The coefficient on the log of weighted microenvironment
CO was 0.81 (CI = 0.40, 1.21), corresponding to a 124.3% (49.9%, 235.6%) increase in personal CO for a
one unit increase in the log of the weighted microenvironment CO. Model fit from Equation (4) was
poorer compared to the results from Equation (3), that included the zone weighted averages.
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Table 2. Summary of results from Equations (1) and (2), modeling personal CO exposure by time-activity categories.

Average Personal Exposure vs. ‘Home Cooking’, ‘Home Not Cooking’,
and ‘Away’ (Equation (1))

Total Integrated Personal Exposure vs. ‘Home Cooking’, ‘Home Not
Cooking’, and ‘Away’ (Equation (2))

Expected value
ppm (95% CI)

Coefficient
(95% CI)

% change
(95% CI) P-value Expected value

(ppm*hr)
Coefficient
(95% CI)

% change
(95% CI) P-value

Intercept
(control group
home cooking)

3.62 (0.78, 16.75) 1.29 (−0.24, 2.82) NA 0.10 11.57
(1.69, 79.07) 2.45 (0.53, 4.37) NA 0.01

Gyapa/Gyapa
Home cooking 0.64 (0.10, 4.05) −1.74

(−3.58, 0.11)
−82.4

(−97.2, 11.7) 0.07 0.64 (0.06, 6.45) −2.9
(−5.22, −0.58)

−94.5
(−99.5, −44.2) 0.01

Philips/Philips
Home cooking 1.36 (0.20, 9.2) −0.98

(−2.89, 0.93)
−62.4

(−94.4, 153.8) 0.31 3.26 (0.3, 35.89) −1.26
(−3.66, 1.13)

−71.8
(−97.4, 210.3) 0.30

Gyapa/Philips
Home cooking 0.69 (0.10, 4.62) −1.67

(−3.57, 0.24)
−81.1

(−97.2, 27.6) 0.09 0.84 (0.08, 9.28) −2.62
(−5.01, −0.22)

−92.7
(−99.3, −19.7) 0.03

Home not
cooking 0.18 (0.04, 0.94) −2.99

(−4.62, −1.35)
−95.0

(−99.0, −74.2) <0.01 1.27 (0.16, 9.83) −2.21
(−4.26, −0.16)

−89.0
(−98.6, −15.0) 0.03

Away from
home 0.13 (0.02, 0.65) −3.36

(−4.99, −1.72)
−96.5

(−99.3, −82.2) <0.01 0.46 (0.06, 3.59) −3.22
(−5.27, −1.17)

−96.0
(−99.5, −69.0) <0.01

Equation (1) Equation (2)

Random effect
by individual

variance
0 0

Random error
variance 2.98 (2.28, 3.89) 4.69 (3.59, 6.14)

Adjusted
R-squared 0.20 0.08

N 107 107
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4. Discussion

Model results using Equation (1) (Table 2) showed significantly higher average exposures during
‘home cooking’ in the control group relative to the ‘home not-cooking’ and ‘away’ categories. In other
words, higher exposures were incurred when home cooking was happening compared to no cooking
or when the participant left the cooking area completely. The intervention group differences during
cooking compared to the control group during cooking were large and lower, but not statistically
significant, potentially due to low sample sizes and high variability, providing suggestive evidence that
CO exposures due to cooking may have been lower for participants in the three intervention groups
relative to the control group. This is similar to results from the analysis of the complete daily-averaged
CO exposure data previously carried out [31]. This analysis showed lower exposure for the three
intervention groups, with the largest reduction for the Philips/Philips group at 14.9% (p = 0.40), while
the Gyapa/Philips group was 0.1% lower (p = 1.00), and the Gyapa/Gyapa group was 5.6% lower
(p = 0.78). Modeling the effect of stove group using daily averages with only the data available when
proximity monitoring took place yielded much larger reductions relative to the control group, but the
magnitude of effects seen in the results from Equation (1) are likely also a consequence of the small
sample size.

Our suggestive evidence of reductions in exposures are particularly notable given that substantial
stove stacking (continued use of traditional stoves alongside improved stoves) was observed across all
of the intervention groups [6]. The intervention cookstoves also deteriorated (e.g., Philips batteries or
fans failed and/or both stove bodies physically degraded) over the course of the intervention, which
may account for the modest exposure reduction in the Philips/Philips group here, as the proximity
measurements were collected in the latter half of the study period.

The importance of home-level air pollution sources thus appears to be quite substantial. However,
average exposures were based on different time durations, and cooking takes up less time than the
‘home not cooking’ and ‘away’ categories. Model results using Equation (2) reflect this, and summary
distributions presented in Figure 3 indicate that more than a third of average daily exposure was
experienced more than 90 m from the cooking area. Source apportionment of PM2.5 in the same study
showed that two cooking-related sources accounted for a median 15.3% of elemental carbon (EC) and
9.2% of organic carbon (OC) in personal and cooking area concentrations, with other important sources
including a biomass combustion source that appeared to be more regional in nature, and vehicular
combustion [7]. It should be noted that neither total daily PM2.5, nor EC and OC have been found to
be well correlated with CO in rural settings in personal or microenvironmental measurements in the
region [7,39].

Results from the models using Equations (3) and (4) show that microenvironment CO
measurements coupled with cooking area proximity data can substantially improve prediction
of personal exposure using area measurements, even in areas with high variability in cooking location,
ventilation, and cooking area geometry.

While the system we have developed shows promising results, further testing should be performed
to assess performance and limitations in other regions, household member types (especially children),
seasons, and with other pollutants. Additionally, the correlation between microenvironmental pollution
concentration and personal exposure is likely to vary based on regions and cooking behaviors, so pilot
studies should always be performed to determine model coefficients and quality of fit.

Allen-Piccolo et al. [40] introduced an ultrasound-based time-location monitoring platform
(UCB-TAMS) for cookstove applications that displayed promising results. Ultrasound has lower
attenuation than Bluetooth, thus improving signal consistency in difficult geometries or crowded
spaces, but such systems have not come into widespread use. As used in their study, one receiver
is placed in each room of interest, and the users wear the ultrasonic transmitters on the outside of
their clothing. A receiver and three transmitters were reported to cost $80 when purchased at scale,
very similar to the cost of the system presented here. We were unable to perform a direct comparison
between the systems due to UCB-TAMS unavailability.
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5. Conclusions

With a budget of $120 per set of equipment, we were able to add temporally resolved proximity
to stove data to improve our understanding of personal CO exposure from REACCTING. There
were significant inter-user differences by exposure location, and thus exposure sources. The results
presented here demonstrate the ability to more accurately measure CO exposure differences due to the
intervention. Such a system could even be used to customize exposure reduction strategies to different
types of users. Additionally, this proximity sensing and exposure monitoring system has application
in other settings where there is concern for air pollutant exposure, but limited quantitative knowledge
about the relative importance of the pollutant sources.

We find that even in the dynamic and predominantly outdoor homes in Northern Ghana, using the
proximity data provided reasonably good performance in predicting personal CO exposure. We would
expect improved performance in applications with tighter building envelopes, more time spent in the
main cooking area, and fewer sources of combustion emissions. This exposure assessment technique
has broad applicability across exposure monitoring domains-ranging from evaluating global health
with respect to development to occupational and industrial safety. In addition to improved exposure
modeling and the ability to attribute exposure based on proximity to sources, variability of exposure
within individuals can be explored in detail; through this approach, behaviors that result in relatively
higher exposure, for a given individual, can be determined. While so much information may be difficult
to synthesize, in large part because of the high variability, if a study can collect large sample numbers
then having such data provides great potential to fully understand the effectiveness of interventions as
well as develop behavior- focused exposure mitigation strategies.

Supplementary Materials: The following are available online http://www.mdpi.com/2073-4433/10/7/395/s1.
Figure S1: RSSI-to-distance calibrations for various calibration models. The bold black line shows a fit using
aggregate data from both phones, and both beacons, while the thin lines are phone/beacon specific. Box and
whisker plots show the distributions of the all the raw data, with whiskers representing 5th and 95th percentiles.
Note that the outlying curves on the top and bottom of the plot are from phone 4, suggesting a performance
issue with that phone. Figure S2: Modeled categories vs. known categories for all merged beacon signal data.
Percentages add up to 100 by column, as the x-axis represent the known category values. Figure S3: Performance
from the validation deployment in an open field. Light colored boxes show the match rate, and dark boxes show
the rate at which the algorithm predicted within one zone of the correct zone. Left frames show performance
by distance zone, while right frames show overall performance. Top frames show match rates using the MV
algorithm, the middle frames show rates using minute medians, and the bottom frames show match rates using
the merged beacon data along with the MV algorithm. Figure S4: Performance from the test deployment with
additional obstructions. Light colored boxes show the match rate, and dark boxes show the rate at which the
algorithm predicted within one zone of the correct zone. Left frames show performance by distance zone, while
right frames show overall performance. Top frames show match rates using the MV algorithm, the middle frames
show rates using minute medians, and the bottom frames show match rates using the merged beacon data along
with the MV algorithm. Figure S5: Mean exposure distributions categorized by zones. Marker colors indicate the
participant’s average exposure from the entire day, and red stars represent means by zone. Slope of decreasing
average exposure by zone was not found to be statistically significant by univariate linear regression. Table S1:
Summary of time-activity states and defining criteria used in Equations 1 and 2. Table S2: Summary of results
from modeling personal CO exposure by cooking area CO.
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